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operations an be performed very quikly by means of Boolean operators suhas AND, OR, or XOR.The ontributions of this artile are as follows. We summarize the urrentstate of the art of bitmap index tehnologies and fous in partiular on queriesagainst sienti� data. Next we introdue a novel bitmap evaluation tehniqueand ompare it with urrently deployed methods. We provide both analyses andexperimental measurements to show that the new strategy indeed minimizes thenumber of reords sanned. In some ases we observe a fator two improvementin query response time using the new strategy.2 Related WorkBitmap indies are mostly used for On-Line Analytial Proessing (OLAP) anddata warehouse appliations [1℄ for omplex queries in read-only or append-only environments. The most ommonly used bitmap enoding strategies areequality, range or interval enoding [2, 3℄. Equality enoding is optimized forso-alled exat math queries of the form a = v where a is an attribute and vthe value to be searhed for. Range enoding, on the other hand, is optimizedfor one-sided range queries of the from a op v where op 2 f<;�; >;�g. Finally,interval enoding shows the best performane harateristis for two sided-rangequeries of the form v1 op a op v2.Traditional bitmap indies are typially used on integer and string values.However, sienti� data is often based on oating point values whih requiresother kinds of bitmap indies based on binning [6, 7℄. In this ase, one bitmapdoes not represent one attribute value but one attribute range (see Figure 1).Assume that we want to evaluate the query x < 63. The bitmap that holdsthese values is bitmap 4 (shaded in Figure 1). This bitmap represents oatingpoint numbers in the range of 0 to 80. In order to evaluate the query x < 63,two additional steps are required in order to retrieve the values that math thequery ondition.Note that bitmap 4 represents values in the range of 0 to 80, whih is morethan what we have spei�ed as our query ondition (63). We now ombine bitmap4 and bitmap 3 with the logial operator XOR and get those values that are inthe range of 60 to 80. As depited in Figure 1, two values are left that need tobe read from disk and heked against the query onstraint x < 63. We all thisadditional step the andidate hek.There are a number of approahes to redue the index size and inreasethe performane of the bitmap index for high ardinality attributes. These ap-proahes inlude multiomponent enoding [2, 3℄, binning the attribute values[6, 7℄ and ompressing the bitmaps [4, 8℄.3 Evaluation StrategiesThe query example in Setion 2 is a typial one-dimensional query sine the queryondition onsists of only one attribute. For multi-dimensional queries that on-
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Fig. 1. One-sided range query x < 63 on a range enoded bitmap index.tain several attributes, for instane x1 < 63 AND x2 > 72 AND x3 � 5:2, theresults of several bitmaps need to be ombined. The goal is to alulate theintermediate result of eah query dimension in suh a way that the number ofandidates and thus the number of disk sans is minimized. In this setion wepresent three di�erent tehniques for evaluating bitmap indies with binning.Assumptions and De�nitions: The following analysis assumes all attributeshave uniform distribution. This represents the worst ase for the bitmap indies,whih are usually more eÆient on real appliation data as demonstrated inSetion 5. Without loss of generality, we further assume the domain of eah at-tribute is normalized to be [0, 1℄. We limit all queries to be onjuntive witha one-sided range ondition on eah attribute xi < vi. The bin boundaries justbelow and above vi are denoted by vi and vi respetively. For the attribute x inthe domain of [0, 140℄, the query x < 63 shown in Figure 1 is normalized to bex < 0:45. The lower and upper ranges of the andidate bitmap are 60 and 80.After normalization, we yield v=0.43 and v= 0.57.Strategy 1: Figures 2a) - g) show a graphial interpretation of the bitmapevaluation strategy on a 2-dimensional query. In the �rst phase, the bitmap in-dex is sanned for both attributes. The result is an L-shape whih representsthe andidate reords (see Figure 2) of both dimensions 1 and 2. We refer tothese andidates as Ctot. Sine the domains of the attributes are normalized, thenumber of reords in Ctot is equal to the area of the L-shape times the totalnumber of reords N .Let us assume the hit area for attribute i is denoted as Hi and the andidatesfor attribute i are denoted as Ci. We an alulate the andidate L-shape Ctotas follows: Ctot = (H1 _ C1) ^ (H2 _ C2) � H , where H = H1 ^ H2. This isequivalent to what is shown graphially in Figure 2.In the next phase, the andidate hek for attribute 1 is performed by readingthe attribute values from disk and heking them against the range ondition. All



Fig. 2. Calulation of the andidate area for strategies 1 and 3.

Fig. 3. Bitmap evaluation strategy 1.reords represented by Ctot are heked (see Figure 3a)). The reords satisfyingthe range ondition involving attribute 1 is reorded as r1. Finally, the andidatehek for dimension 2 is performed by reading all attributes represented by thearea r1 (see Figure 3b)). The results of the 2-dimensional query are shown inFigure 3).Let the andidate seletivity of ith dimension si be the fration of reords thatneed to be sanned, the andidate seletivity of the �rst dimension s1 = v1v2 �v1v2, and the andidate seletivity of the seond dimension s2 = v1v2� v1v2. Ingeneral, the equation for the andidate seletivity is:si = 0�i�1Yj=1 vj dYj=i vj1A� dYj=1 vj (1)



where d refers to dimension. The total number of reords sanned S =NPdi=1 si.Ideally, we would only read the andidate reords during the andidate hek-ing. Sine most I/O system performs disk operations in pages, more reords areatually read into memory. To more aurately evaluate the ost of andidateheking, we ompute the number of page aesses for eah attribute. Given theandidate seletivity s, the estimated number of pages is (1� e� sNp )p, where Nis the number of reords of the base data and p is the number of pages for oneattribute [5℄. The total number of pages for all dimensions isPdi=1(1� e� siNp )p.For the next two bitmap evaluation strategies, the number of pages is estimatedanalogially.Strategy 2: This strategy evaluates eah dimension separately. Using the same2D example as before, the bitmap index for the �rst attribute is evaluated �rstand the andidates of this attribute are heked immediately afterward (see Fig-ure 4a)). After these operations the ondition involving the �rst attribute is fullyresolved. In Figure 4 the result is denoted as H1. Similarly, dimension 2 is evalu-ated. Sine the query onditions are onjuntive, the �nal answer must be fromH1. Therefore, the andidates to be heked must be both in H1 and C2. Thisredues the area from v2 � v2 to v1(v2 � v2).

Fig. 4. Bitmap evaluation strategy 2.It is straightforward to extend this strategy to resolve more attributes. Theandidate seletivity of attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi) (2)Strategy 3: This strategy is an optimal ombination of Strategies 1 and 2.Given the values are binned, it heks the minimal number of andidates.



Fig. 5. Bitmap evaluation strategy 3.The �rst phase of this tehnique is idential to Strategy 1. One the L-shaped area Ctot is omputed, the andidate hek for dimension 1 an begin.However, rather than sanning all attributes represented by Ctot, this area isredued by \AND"ing together the andidate bitmap C1 with Ctot (see Figure5)). In this ase the andidate seletivity is s1 = (v1 � v1)v2. The result of thisandidate hek r1 is ombined with Ctot and C1 to produe a re�ned andidateset R1 = Ctot ^ :(M1 ^ :r1), where M1 = Ctot ^ C1.To determine the minimal andidate set for attribute 2, the re�ned andidateset R1 and the andidate set C2 are \AND"ed together, whih produesM2. Thearea representing M2 is v1(v2 � v2). Let r2 denote the result of this andidatehek. The �nal result of the two dimensional query is H _ R2, where R2 =R1 ^ :(M2 ^ :r2).The whole proess is depited in Figure 5. In general, the andidate seletivityfor attribute i is as follows:si = 0�i�1Yj=1 vj1A (vi � vi)0� dYj=i+1 vj1A (3)This strategy heks the minimal number of andidates. It ahieves this withsome extra operations on bitmaps. The �rst two strategies only need to aessthe bitmap indies one. However, this strategy has to aess the bitmap indiestwie: one to determine the initial andidate set Ctot and one to determinethe andidates for the ith attribute to ompute Ci. In addition, it needs morebitwise logial operations after eah andidate heking to re�ne the andidatesets. These extra bitmap operations learly require time. One question we seekto address is whether the savings in redued andidate heking is enough too�set these extra operations on bitmaps.



4 Analytial ResultsIn this setion we evaluate the three strategies disussed in Setion 3 aordingto the number of andidates heked and the number of pages aessed. Allevaluations are arried out on a data set of 25 million reords with 10 attributes.All attributes are uniform random values in the range of [0, 1℄. We have hosen25 million reords sine our real data used in the next setion also omprisesof 25 million entries. For eah dimension we assume a bitmap index with 300bins as in the performane tests in the next setion. The page size is 8KB. Eahattribute value takes 4 bytes to store and all pages are paked as in a typialprojetion index [5℄. In many data warehouse appliations, the projetion indexis observed to have the best performane in answering omplex queries. We useit as a referene for measuring the performane of the various bitmap shemes.To simplify the evaluation, we set all vi to be the same. Furthermore, we assumethe query boundaries are never exatly on the bin boundaries, i.e., v 6= v 6= v.Figure 6 shows the number of andidates expeted (aording to Equations 1, 2and 3) and Figure 7 shows the number of page aesses expeted.
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Fig. 6. Total number of andidates for multi-dimensional queries.For one-dimensional queries there is no performane di�erene among thestrategies (see Figure 6a)). In all ases, the andidate seletivity is 0.3% (=1=300) whih orresponds to all entries of one andidate bitmap. Note that sineeah page ontains 2048 reords, seleting one out of every 300 reords meansall pages are aessed.When more than one attribute is involved, there is a signi�ant di�ereneamong the strategies. We observe that Strategy 1 performs better than Strategy



0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 2d − Query boundary

P
ag

e 
I/O

 [p
ag

es
]

0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 5d − Query boundary

P
ag

e 
I/O

 [p
ag

es
]

0 0.5 1
0

2

4

6

8

10

12

x 10
4

b) 10d − Query boundary

P
ag

e 
I/O

 [p
ag

es
]

Projection
Strategy 1
Strategy 2
Strategy 3

Fig. 7. Page I/O for multi-dimensional queries.2 for queries with boundaries below 0.5. For query with boundaries above 0.5,Strategy 2 performs better than Strategy 1. However, in all ases Strategy 3shows the best performane harateristis.5 Bitmap Index PerformaneQuerying Syntheti Data: We �rst verify the performane model on uniformrandom attributes. As in the previous setion, we generated a bitmap index for25 million reords and 10 attributes. The index onsists of 300 range-enodedbins. The whole bitmap index is ompressed with the WAH sheme [8℄. The sizeof the base data is 1 GB. The size of the bitmap indies is about 10 times largerbeause range-enoded bitmap indies are hard to ompress. The experimentsare arried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/Osubsystem is a hardware RAID with two SCSI disks.To verify the performane model, we ran the same benhmarks as reportedin Setion 4. The results for multi-dimensional queries with query boundaries inthe range of [0, 1℄ are shown in Figure 8. We an see that in all ases strategy3 results in the lowest number of andidates to be heked. The number ofandidates heked is exatly as expeted.Figure 9 shows the query response time. As we expeted from our analytialresults, strategy 3 performs best in most ases and has a performane gain ofup to a fator of two. We also see that apart from one ase, the bitmap indexperforms always better than the projetion index.Querying Sienti� Data: We also tested our new bitmap evaluation strate-gies on a set of real data from ombustion studies. The data was omputed froma diret numerial simulation of hydrogen-oxygen autoignition proesses. Ourtiming measurements use randomly generated onditions on 10 hemial speiesinvolving hydrogen and oxygen [9℄. For eah attribute we built a range-enodedbitmap index with 300 bins. In this ase, the total index size is only 40% largerthan the base data beause the distribution of the real data is not uniform.The query performane results are presented in Figure 10. We observe that all
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Fig. 8. Total number of andidates for multi-dimensional queries against uniformlydistributed random data.
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Fig. 9. Response times for multi-dimensional queries against uniformly distributedrandom data.bitmap shemes work signi�antly better than the projetion index. The rela-tive di�erenes among the three bitmap based evaluation strategies are smallbeause fewer andidates are sanned than on the uniform random data. In gen-eral, Strategy 1 uses more time than others, and Strategies 2 and 3 use aboutthe same amount of time. The average query response time using ompressedbitmap indies is less than one seond in all tests. For 5-dimensional queriesthe ompressed bitmap indies are, on average, about 13 times faster than theprojetion index.6 ConlusionsWe introdued a novel bitmap evaluation strategy for bitmap indies with bins.It minimizes the number of reords sanned during the andidate heking, but
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